SCIENTIFIC DATA MANAGEMENT WITH
GIT AND GIT-ANNEX

Arnaud Legrand

UCA @ Lo l:"'

G bl Alp uuuuuuuuuuuuuuuuuuuuu

Journée GitLab, GT "Données” de la MITI du CNRS
June 2023

NO TRANSPARENCY

NO CONSENSUS

u I SEE
A No ipga! ANT TO UREAS I;f::t"’ How Do You vt

oUR RAW No o How £Ee. REVIEW
k pATAZ whY! n%a youbet o ey ﬁeﬁﬁrzl& z B Blogen bt fliaid
A : e ?_E?uu—s_ WOR KINGS Rl : T RERD ITS TRUE? 5 JeusT ME
5 5 s

1/20

REPRODUCIBLE RESEARCH = RIGOR AND TRANSPARENCY

Eﬁable Accessible nteroperable Reusab\e
9y
JORLE: I ¥;

2/20

https://learninglab.inria.fr/en/mooc-recherche-reproductible-principes-methodologiques-pour-une-science-transparente/
https://learninglab.inria.fr/en/mooc-recherche-reproductible-principes-methodologiques-pour-une-science-transparente/

REPRODUCIBLE RESEARCH = RIGOR AND TRANSPARENCY

Eﬁable Accessible nteroperable Reusab\e
9y
JORLE: I ¥;

Good research requires time and resources

Train yourself and your students: RR, statistics, experiments

MOOC Reproducible Research: Methodological
principles for a transparent science, Inria Learning Lab
- Konrad Hinsen, Christophe Pouzat
+ Markdown, CSV, GitLab
- Notbooks: Jupyter / Rstudio / Org-Mode
- 3rd Edition: March 2020 - December 2023 (15,000+)

2/20

https://learninglab.inria.fr/en/mooc-recherche-reproductible-principes-methodologiques-pour-une-science-transparente/
https://learninglab.inria.fr/en/mooc-recherche-reproductible-principes-methodologiques-pour-une-science-transparente/

REPRODUCIBLE RESEARCH = RIGOR AND TRANSPARENCY

Eﬁable Accessible nteroperable Reusab\e
9y
JORLE: I ¥;

Good research requires time and resources

Train yourself and your students: RR, statistics, experiments

MOOC Reproducible Research: Methodological
principles for a transparent science, Inria Learning Lab
- Konrad Hinsen, Christophe Pouzat
+ Markdown, CSV, GitLab
- Notbooks: Jupyter / Rstudio / Org-Mode
- 3rd Edition: March 2020 - December 2023 (15,000+)

MOOC "Advanced RR” planned for Nov. 2023

- Managing data (FITS/HDF5, Zenodo, SWH git annex)
- Software environment control (docker, singularity, guix)
- Scientific workflow (make, snakemake) -

https://learninglab.inria.fr/en/mooc-recherche-reproductible-principes-methodologiques-pour-une-science-transparente/
https://learninglab.inria.fr/en/mooc-recherche-reproductible-principes-methodologiques-pour-une-science-transparente/

VERSION CONTROL AND LARGE FILES

- Allows to track versions (i.e., to manage a history)
in a distributed way

(MOOC RR1: Introduction to Git without the
command line (1/3), (2/3), (3/3))

- Designed by Linus Torvald in 2005 (BitKeeper
licensing issues)

- Although many common git workflows are
centralized (e.g, through GitHub and GitLab), git is
distributed

Main drawback: git has been designed and optimized for source
code, not for large binary files

3/20

https://www.youtube.com/watch?v=iub0_uVWGmg
https://www.youtube.com/watch?v=4xsd8jHyVpk
https://www.youtube.com/watch?v=5EFyKBF1wWw

POSSIBLE STRATEGIES

Option 1 Let's commit large files anyway
- Files are stored in the "block chain” of git and cannot be
removed
- The directory .git becomes large (+ duplication) ~ git
becomes slow for you (checkout, diff, push, ...) and others
(clone, pull) @

4120

POSSIBLE STRATEGIES

Option 1 Let's commit large files anyway
- Files are stored in the "block chain” of git and cannot be
removed
- The directory .git becomes large (+ duplication) ~ git
becomes slow for you (checkout, diff, push, ...) and others
(clone, pull) @
Option 2 Let's not commit large binary files and put them in a
shared directory instead
- When and who did what, and why?
- Indicate when (and who) in external metadata
- Backup? How to make sure files are not altered?

- Store a checksum (MD5, SHA1, SHA256, ...) of your files!
- Files are lost or corrupted? Recompute and check the signature

4120

POSSIBLE STRATEGIES

Option 1 Let's commit large files anyway
- Files are stored in the "block chain” of git and cannot be
removed
- The directory .git becomes large (+ duplication) ~ git
becomes slow for you (checkout, diff, push, ...) and others
(clone, pull) @
Option 2 Let's not commit large binary files and put them in a
shared directory instead
- When and who did what, and why?
- Indicate when (and who) in external metadata
- Backup? How to make sure files are not altered?

- Store a checksum (MD5, SHA1, SHA256, ...) of your files!
- Files are lost or corrupted? Recompute and check the signature

Option 3 Use a git on steroids ©

4120

CHRISTMAS LIST FOR DATA MANAGEMENT

1. A lightweight git clone

- Do not download all large files
- More than git tricks (git clone --depth, git subtree/submodule)

5/20

CHRISTMAS LIST FOR DATA MANAGEMENT

1. A lightweight git clone

- Do not download all large files
- More than git tricks (git clone --depth, git subtree/submodule)

2. Get large files on demand

5/20

CHRISTMAS LIST FOR DATA MANAGEMENT

1. A lightweight git clone

- Do not download all large files
- More than git tricks (git clone --depth, git subtree/submodule)

2. Get large files on demand

3. Garbage collection

- Allow to delete large files (even in .git/)...
- ... without messing up the history

5/20

CHRISTMAS LIST FOR DATA MANAGEMENT

1. A lightweight git clone

- Do not download all large files
- More than git tricks (git clone --depth, git subtree/submodule)

No

. Get large files on demand

w

. Garbage collection

- Allow to delete large files (even in .git/)...
- ... without messing up the history

d5>

. Manage different (possibly unreliable) storage media
- While ensuring data integrity

5/20

GIT EXTENSIONS FOR LARGE FILES

Proposed extensions for handling large files:

Git LFS
- Centralized, supported by GitHub, GitLab, BitBucket
- Easy to use (git 1fs track "*.hdf5") but

6/20

GIT EXTENSIONS FOR LARGE FILES

Proposed extensions for handling large files:

Git LFS
- Centralized, supported by GitHub, GitLab, BitBucket
- Easy to use (git 1fs track "*.hdf5") but
- Get large files on demand: set 1fs. fetchexclude to *
git 1fs pull --exclude= --include "filename"
- Double disk space (./ and .git/1fs/objects/) e

6/20

GIT EXTENSIONS FOR LARGE FILES

Proposed extensions for handling large files:

Git LFS
- Centralized, supported by GitHub, GitLab, BitBucket
- Easy to use (git 1fs track "*.hdf5") but
- Get large files on demand: set 1fs. fetchexclude to *
git 1fs pull --exclude= --include "filename"

- Double disk space (./ and .git/1fs/objects/) e
- No file removal without rewriting the whole history ©
- Data is locked up in an opaque storage)

6/20

GIT EXTENSIONS FOR LARGE FILES

Proposed extensions for handling large files:

Git LFS
- Centralized, supported by GitHub, GitLab, BitBucket
- Easy to use (git 1fs track "*.hdf5") but
- Get large files on demand: set 1fs. fetchexclude to *

git 1fs pull --exclude= --include "filename"
- Double disk space (./ and .git/1fs/objects/) e
- No file removal without rewriting the whole history
- Data is locked up in an opaque storage)

Git Annex by Joey Hess (Debian, Haskell)
- Steeper learning curve but
incredibly powerful
- Supported-by GitLab(2015-2017)
- Not specifically designed for scientific
data management but works well

6/20

INTRODUCTION TO GIT-ANNEX

GIT ANNEX PRINCIPLES (1/2)

1 tree

— data.csv

L— big file.pdf

7/20

GIT ANNEX PRINCIPLES (1/2)

1

git add data.csv ; git annex add big file.pdf

}— data.csv
L— big file.pdf -> .git/annex/objects/KJ/QF/SHA256E-s776715--4b2aef98a8a706bedeedbf390b:
SHA256E-5s776715- -4b2aef98a8a706bedeedbf390ba724a64d75bdf295d603951773230a3"

- The project is populated with symbolic links to the large files
which end up in .git/annex/objects (git annex add)

- ~+ No wasted space with file duplication
- Large files are identified by their content (SHA256 by default)

7/20

GIT ANNEX PRINCIPLES (1/2)

1 tree

- The project is populated with symbolic links to the large files
which end up in .git/annex/objects (git annex add)

- ~+ No wasted space with file duplication
- Large files are identified by their content (SHA256 by default)

7/20

GIT ANNEX PRINCIPLES (1/2)

1 git clone https://gitlab.com/alegrand/myrepos.git

}— data.csv
L— big file.pdf -> ~gi

- The project is populated with symbolic links to the large files
which end up in .git/annex/objects (git annex add)
- ~+ No wasted space with file duplication
- Large files are identified by their content (SHA256 by default)

-+ git clone will retrieve only symbolic links for annexed files

7/20

GIT ANNEX PRINCIPLES (1/2)

1

git annex get big file.pdf

}— data.csv
L— big file.pdf -> .git/annex/objects/KJ/QF/SHA256E-s776715--4b2aef98a8a706bedeedbf390b:
SHA256E-5s776715- -4b2aef98a8a706bedeedbf390ba724a64d75bdf295d603951773230a3"

- The project is populated with symbolic links to the large files
which end up in .git/annex/objects (git annex add)
- ~+ No wasted space with file duplication
- Large files are identified by their content (SHA256 by default)
-+ git clone will retrieve only symbolic links for annexed files
-~ Get (and check) content with git annex get

7/20

GIT ANNEX PRINCIPLES (1/2)

1 git annex drop big file.pdf

}— data.csv
L— big file.pdf -> .git/annex/objects/KJ/QF/SHA256E-s776715--4b2aef98a8a706bedeedbf390b:

- The project is populated with symbolic links to the large files
which end up in .git/annex/objects (git annex add)

- ~+ No wasted space with file duplication
- Large files are identified by their content (SHA256 by default)

-+ git clone will retrieve only symbolic links for annexed files
-~ Get (and check) content with git annex get

- Files may be git annex droped (from the annex)

7/20

GIT ANNEX PRINCIPLES (2/2)

- Special remotes are ways to access files

- A USB key, a server through SSH or webdav, a web server, Amazon
S3, etc.

- They have their own structure and do not comprise the git history

- Files may be migrated/duplicated between (special) remotes

- Information on the remotes is stored in a special git-annex
branch which will be synchronized between git repositories

[llustration? Wait for it!

8/20

@:

9/20

git push

9/20

git pull

9/20

9/20

git annex sync

file2

9/20

git annex sync

9/20

060

file2

9/20

208

git annex copy --to USB

9/20

e

P

git annex move --to server
I I

9/20

git annex sync @

9/20

git annex sync

9/20

file2

git annex copy --from server

9/20

a

-

|— README.md # overview of the project
|— README.md # describes where data came from
L— big file.hdf5

git/annex/objects/KJ/QF/SHA256E- 5776715~

L— subfolder/ # may contain subdirectories
processed_data/ # intermediate files fron the analysis
nanuscript/ # manuscript describing the results

results/ # results of the analysis (data, tables, figur
src # contains all code in the project

|— Lice # License for your code

-
doc/ # docunentation for your project
| index. rst

NSE
{— requirements.txt # software requirements and dependencies

[

9/20

file2

git/annex/objects/
o5
—w
= E-5742-- 1 1 json
— R json
—
— g
L SHA256E -1c3167165f51 42b. FTS
= 1c31b716551 d2b. FTS
—3f

2,
L SHA256E-58392320- -666C6a82¢73992427d1f cb251cIcB54a941cF F435626b899addele2b155ef3. FTS
= 6a82e7: 1cf FTs

61
L SHA256E-5605--b0534378ec9145613d19881820edee7eb0987108b42 fe57bdfed61bcabedf . json
[Sy 13d198c8: 7eb0987108b4: 46edf . json
mx
L SHA256E-52102400- - 7782101dad6 b3 70304160cOfC. FTS
L— SHA256E-52102400 - 7 f FTs
7
L SHA256E-52102400- - 49b875863775ad54d7a5cabce678a1 5ed 10398875214 £a0083535089567b3. FTS
L— SHA256E-52. 77520540 2141 F1s
(72

o

9/20

6860

file2

a0

9/20

DATA INTEGRITY

- Hash (SHA1, SHA256, SHA512, ...) for integrity

- Robust internal naming convention compatible with every
file-system

- Minimal number of copies per suffix, directory, ...

- All remotes and special remotes can be verified

- git fsck and git annex fsck
- standard remotes: local verification, transmit the result
- special remotes: may require to transfer all data to verify

10/20

SCIENTIFIC DATA MANAGEMENT WITH
GIT-ANNEX

GIT ANNEX FOR DATA INTEGRITY (1/3)

Situation #1: External data _
Data are produced and made available read-only

(directory, web server, hard drive)

What could possibly go wrong?

1. New data

2. Data is moved around

3. Data behind a filename is altered

4. Data silently disappears

11/20

GIT ANNEX FOR DATA INTEGRITY (1/3)

Situation #1: External data _
Data are produced and made available read-only

(directory, web server, hard drive)

What could possibly go wrong?

Let’s assume data had been imported in git annex
1. New data
Just reimport, duplicates will stored only once!
2. Data is moved around

3. Data behind a filename is altered

4. Data silently disappears

11/20

GIT ANNEX FOR DATA INTEGRITY (1/3)

Situation #1: External data _
Data are produced and made available read-only

(directory, web server, hard drive)

What could possibly go wrong?

Let’s assume data had been imported in git annex

1. New data
Just reimport, duplicates will stored only once!

2. Data is moved around
So what?

3. Data behind a filename is altered

git annex will warn you right away.

4. Data silently disappears

11/20

GIT ANNEX FOR DATA INTEGRITY (1/3)

Situation #1: External data _
Data are produced and made available read-only

(directory, web server, hard drive)

What could possibly go wrong?

Let’s assume data had been imported in git annex

1. New data
Just reimport, duplicates will stored only once!
2. Data is moved around
So what?
3. Data behind a filename is altered
git annex will warn you right away.
4. Data silently disappears

Is there a copy in another remote? Otherwise, if you ever get this file back, your
old symlink will work.

11/20

IMPORTIN . EXAMPLE

git-annex can pull files down from the web and bittorrent.

1 cd data/

git annex addurl --preserve-filename --pathdepth=2 \
https://www.sidc.be/DATA/uset/Wlight/2014/06/UPH20140601105039.FTS

addurl https://www.sidc.be/DATA/uset/Wlight/2014/06/UPH20140601105039.FTS
(to uset/Wlight/2014/06/UPH20140601105039.FTS) ok
(recording state in git...)

This is a (special) url remote from which data can only be pulled

- only git annex get (no git annex copy NOr git annex move)

12/20

GIT ANNEX FOR DATA INTEGRITY (2/3)

Situation #2: Collaborative data production/analysis
- Members of a team are both data producers and consumers
- Read-Write permissions on a server to share data

What will ultimately happen?

1. No more space on your laptop

2. No more space on the server

3. You inadvertently change the content of a file

4. |s this data reproducible?

13/20

GIT ANNEX FOR DATA INTEGRITY (2/3)

Situation #2: Collaborative data production/analysis
- Members of a team are both data producers and consumers
- Read-Write permissions on a server to share data

What will ultimately happen?

1. No more space on your laptop

Just git annex drop or git annex move --to=my-usb-drive

2. No more space on the server

3. You inadvertently change the content of a file

4. |s this data reproducible?

13/20

GIT ANNEX FOR DATA INTEGRITY (2/3)

Situation #2: Collaborative data production/analysis

- Members of a team are both data producers and consumers
- Read-Write permissions on a server to share data

What will ultimately happen?

1. No more space on your laptop
Just git annex drop or git annex move --to=my-usb-drive
2. No more space on the server

git annex drop --from=server checks how many copies are available

No miracle, if the only copy was on your colleague’s stolen laptop...

3. You inadvertently change the content of a file

4. |s this data reproducible?

13/20

GIT ANNEX FOR DATA INTEGRITY (2/3)

Situation #2: Collaborative data production/analysis

- Members of a team are both data producers and consumers
- Read-Write permissions on a server to share data

What will ultimately happen?

1. No more space on your laptop
Just git annex drop or git annex move --to=my-usb-drive

2. No more space on the server
git annex drop --from=server checks how many copies are available
No miracle, if the only copy was on your colleague’s stolen laptop...

3. You inadvertently change the content of a file

Permission denied. You should git annex unlock it first

4. |s this data reproducible?

13/20

GIT ANNEX FOR DATA INTEGRITY (2/3)

Situation #2: Collaborative data production/analysis

- Members of a team are both data producers and consumers
- Read-Write permissions on a server to share data

What will ultimately happen?

1. No more space on your laptop
Just git annex drop or git annex move --to=my-usb-drive
2. No more space on the server
git annex drop --from=server checks how many copies are available
No miracle, if the only copy was on your colleague’s stolen laptop...
3. You inadvertently change the content of a file
Permission denied. You should git annex unlock it first
4. |s this data reproducible?

Just rm, rerun, git annex add, and git status

13/20

SETTING UP A SHARED D

git-annex can store files in Amazon S3, Glacier, WebDAV, or on a rsync
server through ssh:

1 git annex initremote g5k-rsync type=rsync \
rsyncurl=grenoble.g5k:/home/alegrand/git-annex-rsync/
3 git annex describe g5k-rsync "Rsync server on Grid5000"

~

14/20

SETTING UP A SHARED DATA STORE

git-annex can store files in Amazon S3, Glacier, WebDAV, or on a rsync
server through ssh:

1 git annex initremote g5k-rsync type=rsync \
rsyncurl=grenoble.g5k:/home/alegrand/git-annex-rsync/
3 git annex describe g5k-rsync "Rsync server on Grid5000"

~

This is a special remote, i.e,, :

- the file hierarchy is not on the server

- files are stored with the annex structure (SHA256 names)
- the git history is not on the server

- only the annexed files

14/20

SETTING UP A SHARED DATA STORE

git-annex can store files in Amazon S3, Glacier, WebDAV, or on a rsync
server through ssh:

1 git annex initremote g5k-rsync type=rsync \
2 rsyncurl=grenoble.g5k:/home/alegrand/git-annex-rsync/
3 git annex describe g5k-rsync "Rsync server on Grid5000"

This is a special remote, i.e,, :

- the file hierarchy is not on the server

- files are stored with the annex structure (SHA256 names)
- the git history is not on the server

- only the annexed files

Information on this remote (in the git-annex branch) will need to be
regularly synchronized betwen team members

- git annex sync --only-annex to GitLab or GitHub

Bonus: Files stored on special remotes can easily be encrypted! 14120

GIT ANNEX FOR DATA INTEGRITY (3/3)

Situation #3: Publication to the community
- You want to publish part of your data for a publication

- Others should not have to know nor to use ‘git-annex’
Many possible options

1. Make your git repository and your data server public

Wait, making the data server public? How?

15/20

GIT ANNEX FOR DATA INTEGRITY (3/3)

Situation #3: Publication to the community
- You want to publish part of your data for a publication

- Others should not have to know nor to use ‘git-annex’
Many possible options

1. Make your git repository and your data server public
Wait, making the data server public? How?

2. Clean up in a specific branch and publish its head
Just git rm before git annex exporting
Large. History remains hidden

3. Same as above but publish the content of a few files

git annex unannex file; git add file
then clone with a --single-branch --depth=1

History is hidden. SHA256 are visible, anyone can check! ©

15/20

GIT ANNEX FOR DATA INTEGRITY (3/3)

Situation #3: Publication to the community
- You want to publish part of your data for a publication

- Others should not have to know nor to use ‘git-annex’
Many possible options

1. Make your git repository and your data server public
Wait, making the data server public? How?

2. Clean up in a specific branch and publish its head
Just git rm before git annex exporting
Large. History remains hidden

3. Same as above but publish the content of a few files

git annex unannex file; git add file
then clone with a --single-branch --depth=1

History is hidden. SHA256 are visible, anyone can check! ©

Make it easy for others to import your work

15/20

PREPARING THE ARCHIVING

There is even a prototype to use Zenodo as a special remote

- Smooth storing and archiving of file ©
- Files are identified by their SHA256

- Archiving then amounts to push a tar.gz of the content of your
git repository (which points to the SHA256 files)

- Sensitive files could be stored on an encrypted remote and be
made available to only a few persons

16/20

CONCLUSION

ATTENTION POINTS

Clearly define:

- Data stores: servers, USB drives, ...
- USB drives used to share data or only to extend your laptop?

17/20

ATTENTION POINTS

Clearly define:

- Data stores: servers, USB drives, ...
- USB drives used to share data or only to extend your laptop?
- Access rights (read/write, privacy/encryption) of both:

- Git repositories (normal remotes)
- Data stores (special remotes)

17/20

ATTENTION POINTS

Clearly define:

- Data stores: servers, USB drives, ...
- USB drives used to share data or only to extend your laptop?
- Access rights (read/write, privacy/encryption) of both:

- Git repositories (normal remotes)
- Data stores (special remotes)

- Backup policy

- Who is allowed to drop files on the server?
- How much can you trust remotes?

- Minimal number of copies?

- Favorite remotes (for bandwidth)

17/20

WHAT MAKES GIT-ANNEX RELEVANT IN OUR CONTEXT?

- Protection: corrupted data will be detected

18/20

https://git-annex.branchable.com/future_proofing/

WHAT MAKES GIT-ANNEX RELEVANT IN OUR CONTEXT?

- Protection: corrupted data will be detected
- Made to last: https://git-annex.branchable.com/future_proofing/

18/20

https://git-annex.branchable.com/future_proofing/

WHAT MAKES GIT-ANNEX RELEVANT IN OUR CONTEXT?

- Protection: corrupted data will be detected

- Made to last: https://git-annex.branchable.com/future_proofing/

- Backup and storage extendability: your data is not locked in an
opaque cloud

18/20

https://git-annex.branchable.com/future_proofing/

WHAT MAKES GIT-ANNEX RELEVANT IN OUR CONTEXT?

- Protection: corrupted data will be detected
- Made to last: https://git-annex.branchable.com/future_proofing/
- Backup and storage extendability: your data is not locked in an

opaque cloud
- Location tracking: git-annex whereis, git-annex list, and

git-annex enableremote

Let's be honest, the learning curve is a bit steep,

NO TRUAIIWSWPAlﬂENCY
NO CQNSENSUS

18/20

https://git-annex.branchable.com/future_proofing/

THE ELEPHANT IN THE ROOM: CLIMATE CHANGE

NCE IS

-ﬁaen- SRR

IPCC, IPBES, https://climate.nasa.gov/
1. Global climate change is not a future problem

Global Average Temperature Change

"Medieval
+1.0°C arm “Little

ice age"

period"

+0.5 °C -

0.0°C A

-0.5°C -
T T T T T T T T
Year: 200 400 600 800 1000 1200 1400 1600 1800 2000

https://en.wikipedia.org/wiki/Global_temperature_record 2023 Alberta wildfires (> 1Mha) 19/

https://www.ipcc.ch/report/ar6/syr/
https://zenodo.org/record/3553579
https://climate.nasa.gov/
https://en.wikipedia.org/wiki/Global_temperature_record
https://en.wikipedia.org/wiki/2023_Alberta_wildfires
https://lethbridgenewsnow.com/2023/05/23/alberta-forest-land-scorched-by-2023-wildfires-surpasses-one-million-hectares-mark/

THE ELEPHANT IN THE ROOM: CLIMATE CHANGE

IPCC, IPBES, https: //c imate.nasa.gov/
1. Global climate change is not a future problem
2. Itis entirely due to human activity

Limiting warming to 1.5°C and 2°C involves rapid, deep and
in most cases immediate greenhouse gas emission reductions

©) The extent to which current and future generations will experience a
Net zero CO, and net zero GHG emissions can be achieved through strong reductions across all sectors hotter and different world depends on choices now and in the near-term

a) Ne‘ global greenhouse
jas (GHG) emissions

Future emissions
scenarios

Implemented policies

4 T Mationally Determined
T | Contributions (NDCs)
2 range in 2030

§C Gt
\ —— Limit warming to 2°C (>67%)

e Implemented polices
(median, withpercenties 25-75% and 5-95%)

9 to 2 = past emissions (2000-2015)
LT — S -
ming 15 7 3o T Modelrangefor 2015 emissions

5t GHG emisions and uncertainty fo
507 and 2013 it s e mecon)

Paris Agreement'15 ~ Net Zero by 2050 Latest IPCC report 1g9/5q

https://www.ipcc.ch/report/ar6/syr/
https://zenodo.org/record/3553579
https://climate.nasa.gov/
https://en.wikipedia.org/wiki/Paris_Agreement
https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_SPM.pdf

THE ELEPHANT IN THE ROOM: CLIMATE CHANGE 2

NCE IS

-EBEH" 1o

IPCC, IPBES, https://climate.nasa.gov/
1. Global climate change is not a future problem
2. Itis entirely due to human activity
3. 9 out of 10 IPCC scientists believe overshoot is likely

How much warming above pre-industrial times
do you think is likely by 2100?

0 4% 10 20 30 40 50
Percentage of respondents
“Includes 2 responses between 2.7°C and 2.75 °C; 2.5 °C and 3.5 °C were write-in answers. Nature survey, Nov. 2021
b b

19/20

https://www.ipcc.ch/report/ar6/syr/
https://zenodo.org/record/3553579
https://climate.nasa.gov/
https://www.nature.com/articles/d41586-021-02990-w

THE ELEPHANT IN THE ROOM: CLIMATE CHANGE

Put aside biodiversity loss, pollution, freshwater, land system change...

EVOLUTION DE ’EMPREINTE CARBONE DE LA FRANCE Empreinte carbone moyenne en France Objectif d'ici 2050
CLRER) Entco.éamabitant 10 tonnes de COze/an/pers. - de 2t de COze/an/pers.
T s e - — e
g 1 —} <2tCOze
0 3
. T e
;: Pj\rexemgle: -
~ <
- 0,5 L
B T R 'z, 05 A
. =
0,5 4
@ Emissions par personne (échelle de droite)
R 0,2 n
: o o oo a5 o
it - https://Www4nosviesbascarbone.org,
7= = e uveions

Sources : Kit Inventons nos vies bas carbone (Fév. 2021), Rapport sur [état de lenvironnement en France (Déc. 2020) BASCARBONE

20/20

https://www.nosviesbascarbone.org/
https://www.ecologie.gouv.fr/trajectoire-rechauffement-reference-ouverture-consultation-publique

THE ELEPHANT IN THE ROOM: CLIMATE CHANGE

Put aside biodiversity loss, pollution, freshwater, land system change...

EVOLUTION DE L'EMPREINTE CARBONE DE LA FRANCE

Empreinte carbone moyenne en France Objectif d'ici 2050
ERMICO 89 O 10 tonnes de COze/an/pers. - de 2t de COze/an/pers.
500 A1 et 0
Py .

0 wo | coe
700
w0
00
w0
. 3) Par exemple :
oo N PP N | S
0 L 7 0,5

e T am a0 s e e 7 0,5

05 2

@ Emissions par personne (échele de droite)

e L 02 a
CH., N:0). En 2021, la | | =

e 10 e <2icoe 0o =3

it https://www.nosviesbascarbone.org

DES, 2021

INVENTONS
‘Sources :Kit nventons nos vies bas carbone (Fév. 2021), Rapportsur tat de fenvironnement en France (Déc. 2020) EASANRE

French government response
- Verdissement de l'industrie: « pause » sur les normes environnementales
- Loi de programmation militaire (+41%)

- Nous devons préparer la France a une élévation de la température de 4 °C

- Academia ? PEPR 5G, Cloud, NUMPEX, Quantique, IA, Agroécologie et numérique

20/20

https://www.nosviesbascarbone.org/
https://www.ecologie.gouv.fr/trajectoire-rechauffement-reference-ouverture-consultation-publique

THE ELEPHANT IN THE ROOM: CLIMATE CHANGE

Put aside biodiversity loss, pollution, freshwater, land system change...

EVOLUTION DE L'EMPREINTE CARBONE DE LA FRANCE

Empreinte carbone moyenne en France Objectif d'ici 2050
ERMICO 89 O 10 tonnes de COze/an/pers. - de 2t de COze/an/pers.
500 A1 et 0
Py .

0 wo | coe
700
w0
00
w0
. 3) Par exemple :
oo N PP N | S
0 L 7 0,5

e T am a0 s e e 7 0,5

05 2

@ Emissions par personne (échele de droite)

e L 02 a
CH., N:0). En 2021, la | | =

e 10 e <2icoe 0o =3

it https://www.nosviesbascarbone.org

DES, 2021

INVENTONS
‘Sources :Kit nventons nos vies bas carbone (Fév. 2021), Rapportsur tat de fenvironnement en France (Déc. 2020) EASANRE

French government response
- Verdissement de l'industrie: « pause » sur les normes environnementales
- Loi de programmation militaire (+41%)

- Nous devons préparer la France a une élévation de la température de 4 °C

- Academia ? PEPR 5G, Cloud, NUMPEX, Quantique, IA, Agroécologie et numérique

Severat scenarios on the table

- What will research/CS look like/be used for in such a world?
- Energy optimization/saving # sobriety and frugality 20/20

https://www.nosviesbascarbone.org/
https://www.ecologie.gouv.fr/trajectoire-rechauffement-reference-ouverture-consultation-publique

	Version Control and Large Files
	Introduction to Git-Annex
	Scientific Data Management With Git-Annex
	Conclusion

